Analysis of Sparse Cutting Planes for Sparse MILPs with Applications to Stochastic MILPs

نویسندگان

  • Santanu S. Dey
  • Marco Molinaro
  • Qianyi Wang
چکیده

In this paper, we present an analysis of the strength of sparse cutting-planes for mixed integer linear programs (MILP) with sparse formulations. We examine three kinds of problems: packing problems, covering problems, and more general MILPs with the only assumption that the objective function is non-negative. Given a MILP instance of one of these three types, assume that we decide on the support of cutting-planes to be used and the strongest inequalities on these supports are added to the linear programming relaxation. Call the optimal objective function value of the linear programming relaxation together with these cuts as z. We present bounds on the ratio of z and the optimal objective function value of the MILP that depends only on the sparsity structure of the constraint matrix and the support of sparse cuts selected, that is, these bounds are completely data independent. These results also shed light on the strength of scenario-specific cuts for two stage stochastic MILPs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Sparse Cutting-plane for Sparse IPs with Applications to Stochastic IPs

In this paper, we present an analysis of the strength of sparse cutting-planes for mixed integer linear programs (MILP) with sparse formulations. We examine three kinds of problems: packing problems, covering problems, and more general MILPs with the only assumption that the objective function is non-negative. Given a MILP instance of one of these three types, assume that we decide on the suppo...

متن کامل

Production Planning Problems with Joint Service-Level Guarantee: A Computational Study

We consider a class of single-stage multi-period production planning problems under demand uncertainty. The main feature of our paper is to incorporate a joint service-level constraint to restrict the joint probability of having backorders in any period. This is motivated by manufacturing and retailing applications, in which firms need to decide the production quantities ex ante, and also have ...

متن کامل

Cooperation of LP Solvers for Solving MILPs

A standard approach to solve Mixed Integer Linear Programs is to perform a global branch and bound search through all possible combinations. Due to the hardness of the problem, this search must be closely controlled by a constraint solver which uses constraints to prune the search space in an a priori way. In this paper, we deene a new domain reduction solver which uses in a cooperative way a s...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2018